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ABSTRACT

Past studies have shown that tropical cyclone (TC) projection results can be sensitive to different types of

TC tracking schemes, and that the relative adjustments of detection criteria to accommodate differentmodels

may not necessarily provide a consistent platform for comparison of projection results. Here, future climate

projections of TC activity in the westernNorth Pacific basin (WNP, defined from 08–508Nand 1008E–1808) are
assessed with a model-independent detection and tracking scheme. This scheme is applied to models from

phase 5 of the Coupled Model Intercomparison Project (CMIP5) forced under the historical and represen-

tative concentration pathway 8.5 (RCP8.5) conditions. TC tracks from the observed records and independent

models are analyzed simultaneously with a curve-clustering algorithm, allowing observed andmodel tracks to

be projected onto the same set of clusters (k 5 9). Four of the nine clusters were projected to undergo

significant changes in TC frequency. Straight-moving TCs in the South China Sea were projected to signifi-

cantly decrease. Projected increases in TC frequency were found poleward of 208N and east of 1608E, con-
sistent with changes in ascending motion, as well as vertical wind shear and relative humidity respectively.

Projections of TC track exposure indicated significant reductions for southern China and the Philippines and

significant increases for the Korean peninsula and Japan, although very few model TCs reached the latter

subtropical regions in comparison to the observations. The use of a fundamentally different detection

methodology that overcomes the detector/tracker bias gives increased certainty to projections as best as low-

resolution simulations can offer.

1. Introduction

Numerous climate projection studies have been un-

dertaken on the highly active western North Pacific

(WNP) tropical cyclone (TC) basin leading toward a

growing consensus on TC frequency, genesis location,

and track projection results. Such studies generally

utilize one of three methods to investigate TC behaviors

in climate models: 1) direct simulation, 2) downscaling,

or 3) use of large-scale genesis indices. An advantage of

direct simulation over the other two methods is that

other than limitations inherent in the models and de-

tection algorithm, no additional assumptions are re-

quired [see Emanuel (2013) for further reading]. Both

fine (;20–50km) and coarse (;100–300km) resolution

climate models have been used for direct simulation ofCorresponding author: Samuel S. Bell, ss.bell@federation.edu.au
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TCs in the WNP (e.g., Bengtsson et al. 2007; Stowasser

et al. 2007; Sugi et al. 2009; Zhao et al. 2009; Held and

Zhao 2011; Murakami et al. 2011; Scoccimarro et al.

2011; Murakami et al. 2012a,b; Camargo 2013; Mori

et al. 2013; Strachan et al. 2013; Vecchi et al. 2013;

Vecchi et al. 2014; Walsh et al. 2013; Yokoi et al. 2013;

Knutson et al. 2015; Murakami et al. 2015; Camargo

et al. 2016; Jin et al. 2016; Kossin et al. 2016; Tsou et al.

2016; Nakamura et al. 2017). Although TC intensities

are poorly resolved in coarse-resolution models (e.g.,

Davis 2018), they can have relatively good representa-

tions of the large-scale processes that affect TC char-

acteristics such as genesis locations and tracks (e.g.,

Moise et al. 2015; Chand et al. 2017), which are the focus

of the present study; other projections such as TC rain-

fall and intensity were not made. We stress that such

models are an important tool for providing useful in-

formation on future projections of TC genesis and

tracks, especially considering the abundance of coarse-

resolution climate models that are readily available for

climate projection studies.

Experiments from phase 3 (CMIP3; Meehl et al. 2007)

and phase 5 (CMIP5; Taylor et al. 2012) of the Coupled

Model Intercomparison Project are two such sources of

coarse-resolution models for projection studies. Kossin

et al. (2016) andNakamura et al. (2017) included in their

analyses CMIP5 TC-like storms obtained by direct

simulation to analyze WNP TC frequencies, genesis lo-

cations, and tracks, along with downscaled synthetic

TCs; in the case of Nakamura et al. (2017), TCs from

high-resolution simulations were also analyzed. For the

CMIP5 model TC-like storms, both these studies uti-

lized the same detection and tracking algorithm of

Camargo and Zebiak (2002). Since all detectors have

strengths and weaknesses, different detectors can pro-

duce very different results when applied to the same

model (Horn et al. 2014; Tory et al. 2014) and so we

argue that coarse-resolution simulations for the WNP

basin are worth revisiting with a fundamentally different

detection methodology.

The Camargo and Zebiak (2002) algorithm uses ob-

jectively determined thresholds developed within the

model under consideration, in which there can be some

compensation between model error and detector error

that could partlymaskmodel errors (Tory et al. 2013a,b).

This is particularly problematic for low-resolution

models and weak storms (Horn et al. 2014), typical of

TCs directly simulated in CMIP5 models. Therefore, to

test the veracity of the conclusions in the previous

studies, and to provide a thorough assessment of climate

model performance, and thus provide greater confidence

in projection results, a similar assessment of TC tracks

is undertaken here using the threshold-independent TC

detection and tracking algorithm developed by Tory

et al. (2013a), called Okubo–Weiss–Zeta (OWZ). This

algorithm is fundamentally different in design from

those used in many other studies (e.g., Shaevitz et al.

2014; Horn et al. 2014) and has been used previously

for CMIP5 TC projection studies (e.g., Tory et al. 2013c;

Chand et al. 2017; Bell et al. 2019a,b)

The tuning of this detection algorithm in ERA-

Interim reanalysis data, though not exclusive to this al-

gorithm (e.g., TempestExtremes; Zarzycki and Ullrich

2017), and the use of only large-scale environmental

parameters allow a level of circumvention of detector-

related dependencies on model resolution (Walsh et al.

2007; Tory et al. 2013b; Wehner et al. 2015). Thus the

detector can be applied to, and objectively assess, dif-

ferent CMIP5 models without requiring resolution- or

basin-specific adjustments. This enables the present

study to offer complementary results of CMIP5 model

assessments and projections of WNP TCs to those pre-

sented in Camargo (2013), Nakamura et al. (2017), and

other studies. More broadly, projection results given by

the present study can also form a basis of comparison

with those of other studies involving fine-resolution di-

rect simulations, downscaling, or genesis indices.

In the present study, a multimodel mean of TC de-

tections is constructed to best match several observed

TC climatology features over the historical period 1970–

2000. TCs simulated under historical conditions are then

compared to TCs projected under high radiative forcing

conditions [representative concentration pathway 8.5

(RCP8.5)]. The detection and tracking scheme of Tory

et al. (2013a) is used to simulate TCs in each model. In

contrast to prior studies, we construct our multimodel

mean and cross-validate our results while taking due

consideration of the interdependencies that exist be-

tween certain CMIP5 models (e.g., Knutti et al. 2013;

Sanderson et al. 2015). An objective TC track cluster

analysis (Gaffney 2004; Gaffney et al. 2007) is also

performed in line with prior studies in the WNP (e.g.,

Camargo et al. 2007a,b; Nakamura et al. 2017) to pro-

vide quantitative regional-scale assessments of both

model and observed TC tracks. For consistency, we use

an objective definition of a ‘‘TC track’’ following Bell

et al. (2018) where a track begins at the TC declaration

location1 and terminates if found to be located poleward

of a subtropical jet (Tory and Dare 2015).

Achieving a consensus on future TC characteristics

in the WNP basin becomes more important when

1 The TC declaration location of OWZ detected tracks was

shown to be consistent with a TC first reaching a 10-min sustained

wind speed of 17m s21 in IBTrACS.
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considering the impacts of TC landfalls. Future landfall

rates are likely to depend on the relationship between

greenhouse warming and TC genesis location, fre-

quency, and track direction. Projection studies such as

this will therefore be of great societal value in coming

decades, in terms of best developing risk-mitigation

strategies and concentrating future preparation efforts

to the most high-risk areas. The WNP basin is home to

the most frequent TCs on the planet and is situated right

beside the densely populated coastal regions of eastern

Asia (e.g., Japan, the Korean peninsula, and China) and

southeastern Asia (e.g., the Philippines and Thailand;

see Fig. 1 for geographical locations of these countries).

Generally, these countries experience several TC land-

falls each year, owing to the mean westward and

northwestward steering flows during the active TC sea-

son (e.g., Harr and Elsberry 1995; Zhang et al. 2018). El

Niño–Southern Oscillation has also been shown to

modulate TC landfall rates (Wu et al. 2004), while a

recent study suggested that sea surface temperature

teleconnections from the North Atlantic can also affect

TC landfall rates over East Asia (Gao et al. 2018). In this

study, we also evaluate the exposure of these countries

to TC incidences as a result of greenhouse warming.

The outline of this paper is as follows. Section 2 con-

tains data, definitions, and methods used in this study.

Section 3 evaluates the performance of the OWZ

scheme in the WNP using selected CMIP5 models, and

provides projection results between the late twentieth-

and twenty-first-century simulations. Finally, section 4

provides a summary and discussion of our results with

respect to previous studies undertaken in theWNP basin.

2. Data, definitions, and methods

a. Observational data

The Joint Typhoon Warning Center (JTWC) best

track dataset (JTWC 2017) is used in this study to give a

baseline of TC climatological characteristics over the

historical period 1970–2000. TC tracks were sampled

every 6 h (at 0000, 0600, 1200 and 1800 UTC). To be

consistent with tracks detected in climate models, ob-

served TC tracks begin at the location a storm reaches a

10-min sustained wind speed of 17ms21 [i.e., when a TC

reaches 35 kt (1 kt ’ 0.51ms21) in JTWC (1-min sus-

tained)] with those storms not reaching this intensity

excluded from the analyses. Much like the tracks de-

tected in the CMIP5 models (as discussed in section 2d),

observed tracks are terminated in two cases: 1) if a

forecast center no longer tracks them (i.e., track in-

formation ceases in the database) or 2) after 1979, if they

encounter an objectively diagnosed subtropical jet as

they move poleward (Tory and Dare 2015); the sub-

tropical jet criterion also isolates TCs from those that

may form as nontropical systems in the subtropics.

b. CMIP5 model data

Twelve models from CMIP5 (Taylor et al. 2012) are

used in this study (Table 1), as they were deemed to

simulate reasonable TC climatologies of TC frequency

and select ENSO features with the OWZ detection

scheme (Tory et al. 2013c; Chand et al. 2017). The cur-

rent generation of climate models produced by the

CMIP experiments provides a wide array of platforms to

assess current and future climate scenarios. The two

scenarios assessed in this work are 1) historical simula-

tions (1970–2000) to evaluate and assess the ability of

climate models to simulate observed TC climatology

and 2) RCP8.5 projections (2070–2100) to determine

projected changes as a result of global warming. Future

climate CMIP5 simulations are often implemented with

one of several representative concentration pathways

(e.g., van Vuuren et al. 2011) to control the level of

carbon emissions in the atmosphere compared to pre-

industrial times. In this study, the RCP8.5 scenario that

represents a maximum 8.5Wm22 likely increase in ra-

diative forcing over preindustrial levels (Riahi et al.

2011) was chosen to best elucidate any changing TC

behavior in a warmer climate (e.g., Chand et al. 2017).

c. Detection and tracking

The Okubo–Weiss–Zeta TC detection and tracking

algorithm (Tory et al. 2013a) is used in this study to

detect and track TCs in all models without any adjust-

ment of thresholds to accommodate different model

resolutions. The OWZ algorithm has undergone scru-

pulous validation in reanalysis data in terms of annual

TC numbers and genesis positions (Tory et al. 2013b),

and more recently in terms of tracks (Bell et al. 2018).

Key details of the OWZ algorithm are provided in Tory

et al. (2013a) while a good summary of the algorithm can

be found in the appendix of this paper. Crucially, the

track validation study of Bell et al. (2018) identified a

limitation in the algorithm, suggesting that those TCs

lasting less than 2 days after declaration should be dis-

carded for best performance. This study implements this

suggestion by removing all such detected TCs.

d. TC track definition

The objective definition of a TC track established in

Bell et al. (2018) is also used in the present study. This

definition states that a TC track detected by the OWZ

algorithm commences from the TC declaration location

(as this location best matched the timing of a TC first

reaching the 10-min sustained wind speed of 17m s21 in
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FIG. 1. Map of the WNP basin and TC tracks detected by the Tory et al. (2013a) scheme in 12 CMIP5 models’ historical simulations

(1970–2000). A random sample of 200 tracks is shown for each individual model.
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best track data) and terminates when a TC either dissi-

pates or encounters an objectively diagnosed sub-

tropical jet, identified in the reanalysis and model data

by a 200-hPa jet steam . 25ms21 and zonal winds ex-

ceeding 15ms21 [see Tory and Dare (2015) for details].

e. Cluster analysis

The probabilistic curve-clustering (CC) technique of

Gaffney (Gaffney 2004; Gaffney et al. 2007) is applied to

group together TC tracks of similar properties in the

WNP basin. The cluster analysis was first implemented

separately on the observed and historically simulated

track data, and later run with all track data combined

(denoted ‘‘all-in-one’’). At least 25 cluster runs were

performed on each set of data. In each run, the input

order of the tracks was randomized and 12 iterations of

the expected maximization (EM) algorithm were used.

For each set of data, the cluster run with the smallest

trained log-likelihood value was selected. Following

prior studies (e.g., Camargo et al. 2007a,b2) linear re-

gression mixture (lrm) models of second-order poly-

nomials were fitted to tracks with an objectively

determined number of clusters k. Camargo et al.

(2007a,b) used seven (k 5 7) clusters to describe the

observed WNP TC tracks and the same choice was used

when comparing with model tracks in Nakamura et al.

(2017) and Patricola et al. (2018). To be consistent with

those studies, the present study also initially used seven

clusters to describe WNP TC tracks. However, we ad-

ditionally introduced two more clusters to account for

discrepancies between observed and model data.

f. Detection comparison with Camargo (2013)

Altogether 12 CMIP5 models are used in this study

(Table 1). Six of these models were also assessed with

the TC detection and tracking scheme of Camargo and

Zebiak (2002), hereafter the C-Z scheme, in Camargo

(2013) under historical and RCP8.5 conditions. These

tracks were acquired and adjusted to match the OWZ

tracks in this study (e.g., terminated upon reaching a

subtropical jet, and aligned to the first track position of

OWZ systems; see appendix B herein). This enabled a

direct comparison between this detection scheme (C-Z)

and the OWZ in terms of simulating projected changes

in TC frequencies between the historical and RCP8.5

climate simulations (Table 2). The annual average

number of TCs detected by the C-Z scheme tends to be

less in historical conditions compared to those obtained

via the OWZ scheme. For example, CCSM4 produces

13.4 TCs per year using the OWZ scheme but only 0.7

TCs per year using the C-Z scheme. Similarly, GFDL-

ESM2M produces 21.2 TCs per year using the OWZ

scheme but 9.3 TCs with the C-Z scheme, with the

TABLE 1. Annual frequency of TCs over the historical climate period (1970–2000) in theWNP basin (genesis between 1008E and 1808)
and several genesis subregions. Annual TC counts during the peak 3-month seasonal period [August–October (ASO)] are also included.

Models with an asterisk (*) combine to form a mean of six models (6-M). The models CNRM-CM5 and CCSM4, denoted by a plus sign

(1), are combined to form ‘‘1 model’’ in the 6-M. (Expansions of acronyms are available online at http://www.ametsoc.org/

PubsAcronymList.)

West

(,1408E)
East

(.1408E)
North

(.208N)

Ratio

W/E

Ratio

N/Total ASO

Ratio

ASO/

Total

Total

(yr21)

Horizontal

resolution Reference

Observed 15 10.3 5.2 1.45 0.21 13.6 0.54 25.3 — JTWC (2017)

GFDL CM3 7.9 6.7 2.6 1.18 0.18 5.9 0.40 14.6 2.58 Donner et al. (2011)

GFDL-ESM2G* 14.6 8.4 3.8 1.74 0.16 10.9 0.47 23.1 2.58 Donner et al. (2011)

GFDL-ESM2M 10.8 10.4 3.5 1.04 0.17 10.8 0.51 21.2 2.58 Donner et al. (2011)

ACCESS1.0 9.7 5.4 2.5 1.8 0.17 9.8 0.65 15.1 1.98 Bi et al. (2012)

ACCESS1.3* 14 7.9 3.4 1.77 0.16 11.8 0.54 21.9 1.98 Bi et al. (2012)

HadGEM2 11.1 9.1 4.8 1.22 0.24 12.7 0.63 20.2 1.98 Jones et al. (2011)

BCC_CSM1.1 8.2 8 3.6 1.03 0.22 9 0.56 16.2 2.88 Wu et al. (2014)

BCC_CSM1.1m* 8.7 10.3 3 0.84 0.16 9.7 0.51 18.9 1.18 Wu et al. (2014)

CSIROMk3.6.0* 15.4 16.4 5.7 0.94 0.18 15.5 0.49 31.8 1.98 Collier et al. (2011)

CNRM-CM51 4.3 4.3 2.1 1 0.25 3.7 0.44 8.5 1.48 Voldoire et al. (2013)

CCSM41 8.8 4.6 3.1 1.91 0.23 6.9 0.51 13.4 1.28 Gent et al. (2011)

CNRM1CCSM* 13.1 8.9 5.2 1.47 0.24 10.6 0.48 22.0 —

MIROC5* 12.8 8 1.3 1.6 0.06 8.5 0.41 20.8 1.48 Watanabe et al.

(2010)

6-M 15.4 11.6 4.4 1.3 0.16 13.1 0.48 27 —

2 It is important to note that Camargo et al. (2007a,b) used a

different period and basin definition than considered here, namely

the JTWC best track dataset over the period 1950–2002, and in-

cluded storms that formed outside the WNP basin that later en-

tered the region.
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reference observed annual climatology being 25.3.

However, models generally project TC numbers to in-

crease or decrease in the same direction (except CSIRO

Mk3.6) between the two detection schemes, while small

differences in magnitude causes somemodel projections

to be statistically insignificant (Table 2).

These results highlight how consistently defined de-

tector thresholds are important for assessing and eval-

uating climate models, and consequently having a better

understanding of uncertainties associated with pro-

jection results. In the next section, we discuss in detail

how the OWZ-detected TCs in different climate models

compare with the observations, as well as make assess-

ments of future projections for the entire WNP basin

and individual countries using a select group of models.

3. Results

a. Preliminary assessment of model tracks

Historical TC tracks detected by the OWZ algorithm

in the 12 CMIP5 models over the years 1970–2000 are

shown in Fig. 1. Notably, some models produced by the

same institution (three GFDL models, two BCC and

ACCESS models), display similar track climatology

such as geographical TC genesis distribution and track

shape. It is here that we acknowledge the work of

Knutti et al. (2013) and Sanderson et al. (2015), who

constructed a ‘‘family tree’’ of climate models high-

lighting the interdependencies that exist between some

CMIP5 models and how these can impact on the results

of multimodel experiments. We place each model into

one of four subgroups based on their analyses: the first

three subgroups comprise models that exhibit similar

control states and responses to the RCP8.5 scenario

(e.g., Knutti et al. 2013) and are either produced by the

same institution or based on the same model. The re-

maining ‘‘independent’’ models are placed into a fourth

subgroup to simplify analyses. The model subgroups are

as follows:

d GFDL: GFDL-ESM2M, GFDL CM3, and GFDL-

ESM2G.
d HAD-ACC: HadGEM2-ES, ACCESS1.0, and

ACCESS1.3.
d BCC: BCC_CSM1.1 and BCC_CSM1.1m.
d CCC-M: CSIRO Mk3.6, CCSM4, CNRM-CM5,

and MIROC5

Multimodel TC tracks from each ‘‘subgroup’’ were

then compared to the observations by using measures of

their genesis density, mean track trajectory, and track

density (Fig. 2). Even though genesis densities between

models were reasonably well simulated overall, three

out of four subgroups (i.e., GFDL, BCC, and CCC-M)

showed evidence of an eastward bias in genesis locations

(Fig. 2, top panel). Notably, Zhang et al. (2017) also

found an eastward genesis bias using a variation of

GFDL CM3. In the Gulf of Thailand (see Fig. 1 for

geographical locations), all subgroups except BCC seem

to have overestimated the genesis density. See Tory

et al. (2018) for further reading.

Mean track trajectories in each model subgroup (as

indicated by a preliminary cluster analysis) showed

varied degrees of simulation of the observed trajectories

(Fig. 2, middle panel). For example, simulation of re-

curving tracks reaching high latitudes around Japan is

lacking in all subgroups, as also noted in prior works

(e.g., Zhao et al. 2009; Bell et al. 2018). The HAD-ACC

models appear to be the most consistent in simulating

these types of recurving tracks, while the GFDL models

show little or no recurvature in their mean track tra-

jectories. This contrasts with Camargo (2013) where

GFDL models show a complete recurvature of tracks

(her Fig. 1). This could be either due to the difference in

TC tracks definitions between the two studies, as

Camargo (2013) considered entire detected track length

and we terminated it as soon as a TC encountered a

subtropical jet, or the OWZ scheme is unable to capture

the recurving tracks in the GFDLmodels. Furthermore,

comparisons of track densities (Fig. 2; bottom panel)

TABLE 2. A comparison of annual CMIP5 model detections in the WNP between the Tory et al. (2013a) scheme (OWZ) and the

Camargo and Zebiak (2002) scheme (C-Z) under historical conditions (1970–2000) and the RCP8.5 condition (2070–2100). Agreement

between the detectors on the projected sign of change in TC frequency are in bold. A dash (—) indicates that TC frequencies between the

two climate simulations were not significantly different.

Model Historical (RefOBS 5 25.3) RCP8.5 Projection sign agreement

Detector OWZ C-Z OWZ C-Z OWZ C-Z

GFDL-ESM2M 21.2 9.3 21.5 13.3 — [
GFDL CM3 14.6 9.4 10.3 6.2 ↓ ↓

HadGEM2-ES 20.2 4.7 20.2 3.1 — Y
CSIRO-Mk3.6.0 31.8 16.9 33.3 15.5 — Y
CCSM4 13.4 0.7 13.6 1.6 — [
MIROC5 20.8 4.6 13.6 1.8 ↓ ↓
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further highlight some of these regional-scale de-

ficiencies between model subgroups, such as limitations

in tracking TCs at subtropical latitudes near Japan and

the Korean peninsula.

b. Selection of models for cluster analysis

A good way to reduce the biases that exist within in-

dividual CMIP5 models is to combine them into a mul-

timodel mean. The next question that follows is which of

our 12 models to include in such a mean. To avoid

autocorrelation-related errors, our first stipulation is

that only one model from each of the first three sub-

groups defined in the prior section may become be part

of the multimodel mean. This leaves us with seven po-

tential models to choose from. Our next stipulation is

that, combined, themodels should realistically represent

the observed TC climatology. Table 1 details several

measures of TC climatology features for each model in

the WNP basin, mainly those of TC frequency and

geographical genesis location. Noticeably, some ‘‘in-

dependent’’ models underestimate the observed annual

TC climatology (RefObs 5 25.3). This can become

problematic when comparing observed TC frequen-

cies with model frequencies if they are to comprise

the multimodel mean. However, it was found that

combining CCSM4 and CNRM-CM5 (CNRM1CCSM;

Table 1) produced climatology measures (i.e., TC fre-

quency and genesis distribution) similar to those of the

observations. Treating the latter as one model, this was

combined with five other models (GFDL-ESM2G,

ACCESS1.3, BCC_CSM1.1m, CSIRO Mk3.6, and

MIROC5) to form a six-model mean (6-M). TC clima-

tology measures of the 6-M were also very similar with

the observations (Table 1).

c. ‘‘All-in-one’’ cluster analysis

Next, a curve clustering analysis (Gaffney 2004;

Gaffney et al. 2007) is run to objectively compare the

historically observed and 6-M climate tracks. However,

as is indicated by the middle panel of Fig. 2, cluster an-

alyses run on separate data do not always produce the

same solutions (i.e., location of clusters). So it was not

surprising that a cluster analysis on the 6-M tracks using

seven clusters (k 5 7) did not produce a solution where

all clusters were comparable to the observed clusters

(not shown). Through trial and error, using values of k

from 7 to 13 (not shown), it was found that nine clusters

(k5 9; not shown) enabled the best comparison with the

original seven observed clusters (see Fig. 2, and also

Camargo et al. 2007a,b; Nakamura et al. 2017).

To ensure the clusters are objectively comparable for

projections, the cluster analysis (k 5 9) is performed

with observed tracks, historical 6-M tracks, and pro-

jected (RCP8.5) 6-M tracks all input to the clustering

algorithm simultaneously (i.e., all-in-one). This allows

projection of tracks onto the same set of clusters (Fig. 3).

FIG. 2. (top) TC genesis (random sample of 400) kernel density estimates enclose 33% and 66% of TC genesis (green contours).

(middle) TC tracks (random sample of 400) and (bottom) mean track density (average annual number of individual TCs entering or

formingwithin a 2.58 3 2.58 grid box, smoothed). In themiddle row, a preliminary cluster analysis (k5 7) was run on each set of data.Mean

track trajectories are shown in black.
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Note that the locations of the all-in-one clusters were

very similar to the cluster analysis run solely on the

historical 6-M tracks. The composition breakdown of

each cluster is divided into two tables: Table 2 compares

observed and historically simulated TC frequencies,

while Table 3 compares historically simulated TC fre-

quencies with the projected TC frequencies under

RCP8.5. It is found that the historical 6-M overestimates

TCs in the Gulf of Thailand (cluster H) by 74% (or;1.2

TCs per year), perhaps due to incorrect identification of

tropical depressions as TCs in some models. The his-

torical 6-M also underestimates higher-latitude TC

clusters (clusters F and A), and also TCs near the

equator in the far east of the basin (cluster G). Despite

these inconsistencies, as well as shortcomings in tracking

TCs recurving in westerlies at high latitude above Japan

(section 3a), the 6-M is generally doing well in simulating a

realistic historical TC climatology.

d. Future projections

In additional to regular ‘‘raw’’ projections between

historical and projected climates, TC frequency detection

biases may be factored into projection calculations as a

further measure of confidence. We apply a simple

climate-scale bias correction strategy (e.g., Ho et al.

2012; Hawkins et al. 2013) to correct the number of TCs

in the future climate projection using results from the

historical model simulations and observations (under

FIG. 3. Results of the ‘‘all-in-one’’ cluster analysis, which includes observed and model tracks together. Mean track trajectories for each

cluster are displayed in black, with a sample of individual tracks in grayscale. See Tables 3 and 4 for the composition of each cluster.

TABLE 3. Mean annual composition of TC frequencies in each

cluster. Simulated error is calculated by [(historical 2 observed)/

observed].

Cluster

Observed

(1970–2000)

Historical

(1970–2000)

Simulated

error (%)

A 3.9 3.2 219

B 4.0 3.3 218

C 2.9 3.2 111

D 3.3 2.8 217

E 2.0 2.6 131

F 3.7 2.2 240

G 2.3 1.3 240

H 1.6 2.8 174

I 2.8 1.7 242
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the assumption that the variability in models and ob-

servations are the same) such that

F
Adj

5 F
RAW

1 (O
REF

– C
REF

), (1)

where FAdj represents the adjusted future-climate TC

numbers, FRAW represents raw future-climate (RCP8.5)

TC numbers, OREF denotes observed TC numbers,

and CREF represents raw historical TC numbers.

Furthermore,

P
Adv

5 (F
Adv

2 O
REF

)/O
REF

, (2)

where PAdj represents an adjusted percentage projected

change in TC numbers.

Projections changes in TC frequency for individual

models within the 6-M for each cluster (Fig. 4) give an

indication of the significance of the changes in annual TC

frequencies underRCP8.5 (Table 4). This significance test

of sign is based on a binomial distribution under the as-

sumption that each model has an equal chance of more

or fewer TCs in the projected climate. These results

(Table 4; Fig. 4) indicate significantly decreased TC fre-

quency for the two straight-moving clusters in the South

China Sea (clusters B and D), and increased TC fre-

quency above 208N (cluster F) and also east of 1608E
nearer the equator (clusterG). These results are generally

in line with the studies of Murakami et al. (2011), Kossin

et al. (2016), and Nakamura et al. (2017).

FIG. 4. Percentage change of TC frequencies in each cluster between the RCP8.5 and historical climate simulations for individual

models that comprise the 6-M. CS 5 CSIRO Mk3.6, CC 5 CCSM4 1 CNRM-CM5, Mi 5 MIROC5, GF 5 GFDL-ESM2G, AC 5
ACCESS1.3, BC 5 BCC_CSM1.1m.

TABLE 4. Mean annual composition of TC frequencies in each cluster. Raw projected change is calculated by [(RCP8.5 2 historical)/

historical]. See Eq. (1) for adjusted projection calculations. Confidence in the sign of the raw projections is based on results between

individual models in the 6-M (see Fig. 4); values above 90% are in bold.

Cluster Historical (1970–2000) RCP8.5 (2070–2100) Raw projection (%) Adjusted projection (%) Confidence

A 3.2 3.2 21 21 34%

B 3.3 2.1 235 229 .95%

C 3.2 3.2 22 22 34%

D 2.8 2.0 227 222 90%

E 2.6 3.0 113 117 34%

F 2.2 2.7 125 115 90%

G 1.3 2.3 170 142 .95%

H 2.8 2.3 217 229 66%

I 1.7 1.5 26 24 66%
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Comparing projected TC frequencies (Table 4) be-

tween geographically close clusters with quite distinct

trajectories [B (straight-westward) and A (recurving-

northwestward), and D (straight-westward) and C

(recurving-northwestward)] signals an increase in the

number of TCs taking a northwestward track (i.e., be-

longing to clusters A and E) rather than a westward

track (i.e., belonging to clusters B and D) under the

RCP8.5 scenario, consistent with the findings of earlier

studies (e.g., Colbert et al. 2015; Wang and Wu 2015).

e. Changes in landfall activity

The consequence of TC cluster frequency changes

discussed in the prior section (see also section 3f for

changes in large-scale environmental parameters) on

landfalling events (TC exposure) in different regions is

analyzed here. The following regions are defined

(Fig. 5): the Korean peninsula (348–408N, 1248–1308E),
Japan (328–388N, 1308–1428E), southern China (188–
238N, 1048–1128E), eastern China (228–268N, 1138–
1238E), and the Philippines (68–198N, 1208–1268E). We

define ‘‘TC exposure’’ as the number of individual TCs

that either enter or form within the bounds of a region.

Significant changes in TC exposure were found for

four out of the five regions, with results for eastern

China (E-China) somewhat varied between model sub-

groups (Table 5). For the twomost equatorward regions,

southern China (S-China) and the Philippines, 17% and

FIG. 5. The top left panel shows the defined regions of the Korean peninsula, Japan, eastern China, southern

China, and the Philippines; arrows indicate the adjusted projected change of TC exposure between RCP8.5 and

historical conditions. Projected changes significant at 95% are in red (increase) or blue (decrease). The remaining

figures contain the projected change in annual TC activity (2.58 grid) between RCP8.5 and historical conditions,

where red shading indicates a projected increase in activity.

TABLE 5. Projected change (both raw and adjusted, Praw and Padj) in TC exposure for the 6-M and four subgroup multimodel means.

Model subgroup projection arrows represent the overall direction of change; arrows in bold indicate that each individual model member

agrees on the direction of change. Bolding in the 6-M column indicates both 95% significant agreement between models and a 95%

confidence interval either side of zero.

Model means

6-M

Region Padj Praw HAD-ACC GFDL BCC CCC-M

Korean peninsula ↑9% (↑54%) ↑ ↑ ↑ [
Japan ↑15% (↑67%) ↑ [ ↑ ↑

E-China Y4% (Y8%) Y [ Y Y
S-China ↓17% (↓28%) Y ↓ ↓ ↓

Philippines ↓18% (↓25%) ↓ Y Y ↓
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18% reductions in TC exposurewere found respectively.

For the subtropical regions, the Korean peninsula and

Japan, TC activity was projected to significantly increase

by 9% and 15% respectively. We note the adjusted

projections of TC exposure for Japan and the Korean

peninsula (Table 5) were heavily adjusted down due to

only a few model tracks reaching these regions in com-

parison to the observed climatology. This increases the

uncertainty of this result. The overall pattern of pro-

jected TC activity given by the 6-M mean (Fig. 5) is

generally supported by results from other model sub-

groups (also in Fig. 5), although we note the GFDL

models appear to project decreased exposure in the far

east of the basin.

The contribution of each cluster to changes in TC

exposure for each region was also considered (Tables 6

and 7). We note that projection results that were ad-

justed based on observed TC frequencies can complicate

interpretations when comparing the numbers of TCs in a

particular cluster that enter one of our five defined

regions. Hence, only raw values are used in the discus-

sions below. All values referred to can be found in

Tables 6 and 7.

For example, the Korean peninsula is modulated by

TCs from clusters A and F. In particular, we see that

even though the projected changes in the actual number

of TCs forming in clusters A and F are 1% and 25%,

respectively, the projected change in the number of TCs

reaching the Korean peninsula from these clusters are

27% and 50%, respectively (Table 6). Similarly, in-

creasing TC exposure over southern Japan in the pro-

jected climate is found to be primarily from clusters A

(135%), F (1104%), and E (152%), noting that the TC

frequency in cluster E was projected to increase by just

13%. These results indicate that more TCs are likely to

track farther poleward in the projected warming climate

as opposed to the historical climate. Further analysis

isolating tracks in cluster E (not shown) indicated that

TCs belonging to this cluster were more likely to

follow a curving path into Japan in the projected

TABLE 6. The cluster-specific contributions of TC exposure to the regions of the Korean peninsula, Japan, and the Philippines during

historical and RCP8.5 climate simulations, and the projected change in exposure (PExposure). Where appropriate, results that contribute

little to a region’s exposure were omitted. Calculations were made using a mean of six models (6-M). Raw projected TC frequencies for

each cluster (PFrequencies) are also displayed for comparison, with bolding representing at least 90% confidence in that change, extracted

from Table 4. Clusters are listed in order from most to least populous.

Korean peninsula Japan Philippines

PFrequency

(%) Cluster

Historical

(yr21)

RCP8.5

(yr21)

PExposure

(%)

Historical

(yr21)

RCP8.5

(yr21)

PExposure

(%)

Historical

(yr21)

RCP8.5

(yr21)

PExposure

(%)

21 A 0.2 0.2 124 0.3 0.4 135 0.5 0.5 210

22 C 0.1 144 0.2 0.3 155 0.1 0.1 246

229 B 0.9 0.6 230

113 E 0.1 0.2 152

125 F 0.06 0.13 1127 0.4 0.8 1104

217 H 1.1 0.7 237

227 D 1.8 1.3 224

170 G

26 I 0.8 0.7 212

Total 0.3 0.4 154 1.0 1.6 167 5.2 3.9 225

TABLE 7. As in Table 6, but for the eastern and southern China regions.

Eastern China Southern China

PFrequency (%) Cluster Historical (yr21) RCP8.5 (yr21) PExposure (%) Historical (yr21) RCP8.5 (yr21) PExposure (%)

21 A 1.0 1.0 17 0.1 0.1

22 C 0.2 0.2 26

229 B 0.7 0.5 235 1.8 1.2 236

113 E

125 F

217 H

227 D 0.3 0.3 18 0.3 0.3 22

170 G

26 I 0.1 0.1 29

Total 2.3 2.1 28 2.3 1.7 228
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climate, rather than missing Japan to the south or east.

Analysis of this finding is underway in a separate study

but is beyond the scope of this paper. For the Philip-

pines, we note that fewer straight moving TCs in the

projected climate (i.e., clusters B and D, and to some

extent H), compared to the historical climate, ac-

count for most of the reduced exposure (225%) to

this region.

TCs impacting eastern China are strongly modulated

by clusters A and B (Table 7). We note a slight increase

(17%) in the number of TCs reaching eastern China

from its dominant cluster (A) in the projected climate

as opposed to the historical climate. In contrast, there

is a substantial decrease of TC frequency in cluster B

(229%) as well as a substantial decrease in the number

of TCs eventually reaching eastern China from this

cluster (235%). TCs reaching eastern China from

cluster D are slightly increased (18%) compared to

a reduction in this cluster’s TC frequency (227%).

Altogether these changes account for only a slight

(insignificant) decrease in TC activity for the eastern

China region (Table 5). Southern China is most

strongly modulated by straight moving TCs in the

South China Sea (cluster B). Fewer straight moving

TCs (i.e., clusters B and D) under RCP8.5 substantially

reduce TCs reaching southern China in the projected

climate by ;28%.

f. Role of large-scale conditions

The relationship between TC genesis and certain large-

scale environmental parameters has been well docu-

mented since studies by Gray (1968, 1975). Here we

analyze four large-scale fields, some of which are utilized

by the OWZ TC detection scheme to identify TCs in

model data, to better understand projected changes in TC

genesis, and overall TC activity between the historical and

projected climate simulations. Dynamical parameters

evaluated were cyclonic relative vorticity at 850hPa, en-

vironmental vertical wind shear between 850 and 200hPa

and the vertical velocity v at 500hPa. We also examined

the changes in midlevel relative humidity at 700hPa.

Values needed to compute these parameters (such as u

and y components of winds at respective levels) were

taken during the early to peak TC season in the WNP,

(i.e., July–September). Environmental parameters were

then composited over all sevenmodels that form the 6-M,

for the historical and RCP8.5 simulations, and their dif-

ferences are displayed in Fig. 6. Regions where at least six

out of the seven models agreed on the sign of change are

marked with a crosshatch pattern.

In the South China Sea, we see significant increases

in relative humidity but no discernible changes to

vertical wind shear or omega. The differences in

cyclonic vorticity 3 (anticyclonic vorticity values were

set to 0 before subtraction) between the projected and

historical climates were consistent with decreased

straight-moving TCs and more recurving TCs here,

although only the former were found to be significant

(Fig. 6a). Due to little indication of decreased favor-

ability from other TC genesis parameters, it is likely

that reductions in straight-moving TCs in the South

China Sea are due to more TCs taking a northwestward

track in the climate projection, as indicated by previous

studies (Colbert et al. 2015; Wang and Wu 2015).

North of 208N, we see significant reductions in vertical

wind shear, as well as increases in omega and relative

humidity, supportive of enhanced TC genesis in cluster

F and poleward track movement in clusters F, A, E, and

C. East of 1658E near the equator we see significant in-

creases in relative humidity and ascending motion,

consistent with increased TC frequency in cluster G.

4. Discussion and summary

Many studies in the past have looked at WNP TCs in

the context of climate change using both fine-resolution

model experiments as well as coarse-resolution models

such as those from the CMIP experiments. However,

most of these studies have utilized a model-dependent

TC detection and tracking scheme proposed by Camargo

and Zebiak (2002) or similar. While we note that no de-

tector is perfect and that different detectors can produce

different results when applied to the same model (Horn

et al. 2014), use of a model- or resolution-dependent

detection and tracking scheme can artificially conceal the

true performance of a model by conflating model errors

with detection errors (Tory et al. 2013a,b).

To facilitate thorough assessments of climate model

performance over the WNP basin, and therefore enable

more confidence in projection results, we utilized a

model- and resolution-independent TC detection and

tracking algorithm developed by Tory et al. (2013a),

called Okubo–Weiss–Zeta (OWZ), that is fundamen-

tally different in design from that applied in the prior

studies. This scheme was applied to CMIP5 model sim-

ulations to determine projected changes in the WNP

TCs between historical climate simulations (1970–2000)

and projected climate simulations (2070–2100) under the

RCP8.5 warming condition. Results were then compared

3 It should also be noted that TCs themselves can be responsible

for elevated levels of cyclonic vorticity, and to lesser extent as-

cending motion (i.e., more TCs occurring in a specific region may

artificially inflate values over a 3-monthly mean like that seen in

Fig. 6a). However, this would be unlikely to have a large impact on

the results.
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with several similar studies in order to draw a consensus

on WNP TC changes as a result of global warming. De-

spite often significant differences in the number of TCs

detected between the Camargo and Zebiak (2002)

scheme (the C-Z scheme) and OWZ detection scheme

used in this study, the projection conclusions drawn

are consistent with previous studies using theC-Z scheme.

This is a reassuring result that increases our confidence in

the general results of this and previous papers.

TC tracks in the observed and model data were sep-

arated into nine clusters. While accounting for potential

biases between historical and RCP8.5 climate simula-

tions, projected changes in overall TC frequencies for

each cluster were evaluated. Impacts of these cluster-

specific changes on various subregions, relating to TC

exposure in the WNP basin were also determined. The

main results of this study are summarized as follows.

d In the future climate projection, TC frequencies of

straight-moving TCs in the South China Sea (clusters B

and D) were found to significantly decrease. There was

no evidence of reductions, significant or otherwise, in

the favorability of the large-scale TC genesis parame-

ters analyzed except for a decrease in cyclonic vorticity

close to the coastline. Therefore, these decreases are

likely due to more TCs taking a northwestward track in

the climate projection, as found by several other studies

(e.g., Colbert et al. 2015; Wang and Wu 2015).
d TC frequencies in the eastern and upper segments of

the basin, particularly those associated with clusters F

and G, were found to significantly increase. These

increases were consistent with increased favorability

of the large-scale TC genesis parameters of vertical

wind shear, relative humidity, and omega. These results

are in line with other previous studies (e.g., Murakami

et al. 2011; Kossin et al. 2016; Nakamura et al. 2017).

FIG. 6. Difference in the kernel densities of large-scale TC genesis parameters between RCP8.5 and historical

conditions during the early-to-peak season months of July–September, averaged over each model used in the 6-M.

Cross-hatching indicates at least 90% significance (agreement on sign between models). (a) Cyclonic relative

vorticity at 850 hPa, (b) environmental vertical wind shear between 250 and 800 hPa, (c) relative humidity at

700 hPa, and (d) vertical omega velocity at 500 hPa. Red shading represents more favorable conditions for TC

formation, noting (b) and (d) were multiplied by 21.
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d Significant changes in TC exposure were found in four

subregions. For the two most equatorward regions,

southern China and the Philippines, bias-corrected re-

ductions in TC activity of 17% and 18% were found

respectively. For the subtropical regions of the Korean

peninsula and Japan, TC activity was projected to sig-

nificantly increase by 9% and 15%, respectively. These

results are again consistent with earlier studies (e.g.,

Wang et al. 2011; Kossin et al. 2016; Park et al. 2017).

In closing, we do note that significant discrepancies be-

tween the low-resolution models used in this study

embed a degree of uncertainty in the projection results,

although these limitations wereminimized by themethods

used and confining the analysis to only appropriate TC

characteristics. Furthermore, although findings in this

study were supportive of many results found in prior pa-

pers, there were of course some disagreements among

those existing studies [e.g., Colbert et al. (2015) found in-

creases to the Korean peninsula and Japan to not be re-

markable, in contrast toKossin et al. (2016)], and therefore

projection results to some extent remain uncertain. How-

ever, this study has potentially removed some of that un-

certainty by supporting specific results without the caveats

of the detector/tracker bias and model autocorrelation.
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APPENDIX A

OWZ Detection and Tracking

The OWZ detection system consists of six parameters

(Table A1): minimum thresholds of OWZ at the 850- and

500-hPa levels, relative humidity (RH) at the 950- and 700-

hPa levels, specific humidity (SpH) at the 950-hPa level,

and a maximum threshold of vertical wind shear (VWS)

between 850 and 200hPa. The OWZ variable is a low de-

formation vorticity parameter used to identify regions fa-

vorable for TC formation at the center of a semiclosed

circulation (i.e., a ‘‘marsupial pouch’’;Dunkertonet al. 2009),

within the lower to middle troposphere. More precisely, it is

the product of absolute vorticity and the Okubo–Weiss pa-

rameter (Okubo 1970; Weiss 1991) normalized by the ver-

tical components of relative vorticity squared such that

OWZ5 sgn(f )3 (z1 f )3max

�
z2 2 (E2 1F2)

z2
, 0

�
,

(A1)

where f is the Coriolis parameter, z 5 (›y/›x)2 (›u/›y)

is the vertical component of relative vorticity, E 5
(›u/›x)2 (›y/›y) is the stretching deformation, and F5
(›y/›x) 1 (›u/›y) is the shearing deformation.

The OWZ detection and tracking scheme is concisely

summarized in five points below, with further details ac-

cessible in other studies (Tory et al. 2013a; Bell et al. 2018).

1) Each 18 3 18 grid point is assessed based on the initial

threshold values of each OWZ-Detector parameter

every 12h.

2) When at least two neighboring grid points satisfy the

initial thresholds of each OWZ-Detector parameter,

these points are considered to represent a single

circulation at that point in time.

3) The circulations from item 2 are linked through time

by estimating their position in relation to the circu-

lation’s expected position based on an averaged 48 3
48 steering wind at 700hPa.

4) Tracks are terminated when no circulation match is

found in the next two time steps within a generous

(;350 km) latitude-dependent radius.

5) The core thresholds are then applied to each storm

track, and if they are satisfied for 48h, a TC is declared.

APPENDIX B

C-Z Track Alignment

To properly align the tracks for comparison in Table 2, a

similar track position as the TC declaration position (i.e.,

TABLE A1. Parameter threshold values for the two sets of the OWZ-Detector’s detection criteria; subscripts refer to the pressure

level (hPa).

Parameter thresholds

Criterion OWZ850 OWZ500 RH950 RH700 VWS850–200 SpH950

Initial 50 3 1026 s21 40 3 1026 s21 70% 50% 25m s21 10 g kg21

Core 60 3 1026 s21 50 3 1026 s21 85% 70% 12.5m s21 14 g kg21
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genesis position for OWZ tracks) must be found for the

C-Z tracks. The genesis position of OWZ detected tracks

were compared with matching C-Z detected tracks in each

model [the criteria for a track match or ‘‘hit’’ are the same

as used inBell et al. (2018)]. Results (Fig. B1) show that for

the C-Z tracks, a median of around 7 days after initial

detection is the closest match to the TC genesis (or first)

position of the OWZ tracks. Further analysis (not shown)

found a positive relationship (r5 0.4) between the lifetime

of a C-Z TC and the time it takes to reach the OWZ

genesis position.

Therefore, it was decided to remove the median

number of days (7) identified by Fig. B1 for TCs with

lifetimes greater than 18 days. TCs with lifetimes of

18 days or less were trimmed according to a simple linear

regression equation:

Track removed5 (0:323 lifetime)1 5:1 (B1)

where ‘‘Track removed’’ and ‘‘lifetime’’ are in the units

of number of six-hourly time steps. For example, a TC

with a lifetime of 18 days has 72 six-hourly time steps,

and thus its ‘‘Track removed’’ would be 28 six-hourly

time steps (7 days).
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